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Dynamic many-body theory: Pair fluctuations in bulk ‘He
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Dynamical excitations in bulk liquid “He are investigated by using a manifestly microscopic theory of
excitations that includes multiple-phonon scattering. The wave function of the dynamic system is represented
in terms of one- and two-body excitation amplitudes. Equations of motion for the linear response of boson
liquids to a scalar external field are then derived from a stationarity principle. For a consistent treatment of
long- and short-wavelength properties of the excitation amplitudes we derive and solve three sets of generic
“hypernetted chain” equations determining the basic ingredients of the theory. From those ingredients, we
calculate a dynamic structure function for “He at saturation density. It is shown that the complete solution of
the hypernetted chain equations leads, partly by the cancellation of errors, to an insignificantly improved
theoretical prediction for the dynamic structure function compared with approximations introduced by Jackson,
Feenberg, and Campbell. The implications of this result and the need for including higher-order multiparticle

fluctuations are discussed.
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I. INTRODUCTION

The microscopic description of a strongly interacting sys-
tem conventionally starts with an empirical Hamiltonian

N ﬁz
HO = 2 - ﬂvzz + Uexr(ri) + 2

i=1 |=<i<j=N

),

v(fr; -,

(1.1)

where U,,(r) is an external potential and v(|r,—r)|) is the
interaction between individual particles. Variational methods
have been developed over the past three decades to a level
where the quantitative prediction of ground-state properties
of bulk Bose liquids is a routine matter. The ground-state
wave function for a system of N identical bosons with coor-
dinates ry, ..., Iy is written in the variational Feenberg form!

Wo(ry, ...,ry) = eXP%{E u(r;) + E uy(r;,r))

i i<j

+ X up(rrr) + } (1.2)

i<j<k

The one-body function u,(r) determines the spatial struc-
ture of the system and the two-body function u,(r;,r;) de-
scribes the short- and long-range correlations between pairs
of particles. Triplet correlations are needed to provide quan-
titative agreement between theoretical predictions and the
experimental equation of state,”* and contribute visibly to
the nearest-neighbor peak of the pair-distribution function.
The correlation functions u,(r,,...,r,) are determined by
minimization of the energy-expectation value E,>>

SE,

—=0. 1.3
Su,(ry, ...,r,) (1.3)

Besides simulation methods, the “hypernetted chain”
(HNC) hierarchy of integral equations has proven to be a
robust method that can reproduce, with minimal phenomeno-
logical input, the equation of state of a wide variety of sys-
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tems. Ingredients are two- and three-body correlations that
are optimized by the appropriate Euler-Lagrange (EL) Egq.
(1.3). The solution of the full nonlinear HNC equations is
necessary for a meaningful optimization of the pair correla-
tions (HNC-EL equations). On the other hand, a specific ap-
proximate treatment of the triplet correlations®? dubbed
“uniform limit” or “convolution approximation” (CA) has
turned out to be sufficient.3*
If a small time-dependent perturbation

SH(1) = 2 8U o (r51) (1.4)

momentarily drives the system out of its ground state, the
Jastrow-Feenberg variational wave function, Eq. (1.2), will
become time dependent. The logical extension of the ground-
state theory is then to write the perturbed wave function as

e—iEOt/heéU(t)/2|\I,0>
- [<\PO|eRe§U(z)|\PO>]I/2 ’

|W (1)) (1.5)

where |W,) is the ground-state wave function, E, is the cor-
responding energy, and

U1 =2, by (rzt) + 2 dup(rprin) ++ (1.6)
i i<j !
is the complex excitation operator.
The time-dependent parts of the correlations,
du,(ry, ...,r,:1), are determined by an action principle®’

5S = 5f dil(t) = 5f AV (¢)|Hy+ SH(t) — ih%hlf(t)} =0.

(1.7)

We assume that the external scalar perturbation SH(z) is suf-
ficiently small to permit a linearization of the equations of
motion in terms of the du,(r|,...,r,;); we can then expand
the Lagrangian to second order in 8U(¢). The derivation can
be found in numerous places®~! and does not need to be
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repeated here. The Lagrangian is, to second order in the fluc-
tuations,

1
£(0) = 5 AWl [8U (0. [T. SU ]I Vo)
1 . .
- ;7/<wo|5v(r> SU(1) - U™ (1) SU(1) W)

+ j(‘l’ol SU*(t)SH(t) + SH(t) SU(1)| W)

= L:int(t) + ‘Cz(t) + Cext(t)’ (18)
where T is the kinetic-energy operator, and it is assumed,
without loss of generality, that the fluctuating part of the
wave function is orthogonal to the ground state,
<‘I}0|5U(t)|‘yo>:0, and szd3r] .. .d3rN|\If0(rl yeen ,rN)|2 is
the normalization integral of the ground-state wave function,
Eq. (1.2).

To rationalize why a full HNC evaluation of the ingredi-
ents of the equations of motion should be done, recall the
argument for why pair fluctuations have been introduced in
the first place: when the wavelength of an excitation be-
comes comparable to the interparticle distance, it is expected
that the short-ranged structure of the wave function is af-
fected. The simplest approximation of the excitation opera-
tor, ou,=0 for n=2—we shall refer to this as the “Feynman
approximation” because it is identical to that of the original
Feynman theory of excitations in liquid “He (Ref. 11)—does
not have this flexibility, therefore the roton energy predicted
by the Feynman theory is more than a factor of 2 too high.

The resulting equations of motion including pair fluctua-
tions have mostly been solved at a relatively primitive level,
namely, in the aforementioned CA. This approximation leads
to an expression for the self-energy that is identical to the
one derived in 1960s by correlated Brillouin-Wigner (BW)
perturbation theory.'>”1 It is sufficiently simple that it can
also be implemented for nonuniform geometries.®!°

The apparently so far best implementation of the equa-
tions of motion method is due to Saarela and co-
workers>!718 who arrived at a rather impressive agreement
between theory and experiments. It was, therefore, believed
that the truncation of the excitation operator, Eq. (1.6), at the
pair fluctuation level is sufficient for a quantitatively accu-
rate description of the dynamics of *He, and discrepancies
between theory and experiment had been due to inadequacies
of the CA. Doubts arose when the dynamic theory of single
impurities was developed up to the level of time-dependent
triplet correlations;'® that extension was necessary to de-
scribe the coupling of an impurity to the roton at the right
energy. It turned out that the corrections from triplet fluctua-
tions to the CA were formally quite plausible and quantita-
tively sizeable. It is therefore expected that corrections of
similar size originating from triplet fluctuations should arise
in the bulk fluid, which implies that the results of Refs. 17
and 18 were closer to experiments than a theory with only
pair fluctuations should predict.

The purpose of this work is to bring the implementation
of the equations of motion method to the same level as the
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ground-state theory in the following sense: for the ground-
state theory it is known that the minimum approximation for
the energy that allows for a meaningful optimization of the
pair correlations is the hypernetted chain approximation.
This approximation is, in the language of perturbation theory,
equivalent to the self-consistent summation of ring and lad-
der diagrams, i.e., the class of “parquet” diagrams.?*>> We
will see that the same set of diagrams is also the minimal set
that is needed for a correct treatment of both short- and long-
ranged properties of the n-body distribution functions that
enter the excitation theory. These properties are that the dis-
tribution functions should go to zero when two particles get
closer than the range of the hard core and the sequential
relations between different order distribution functions. In
the implementations of the pair-excitation theory used so far,
the above-mentioned short-distance properties were violated.

Our paper is organized as follows: in Sec. II, we will
formulate the exact equations of motion for the one- and
two-body excitation amplitudes and manipulate these equa-
tions to a form that is suitable for numerical implementation.
This derivation deviates from that of Ref. 8 in a number of
important points. One is that we will introduce, already at the
stage of the Lagrangian Eq. (1.8), a set of new functional
variables. This might seem cosmetic here, but it will turn out
to be an essential step when we include, in future work,?
triplet fluctuations. The second aspect is a factorization
which lets us identify, in analogy to the impurity theory,”* a
“renormalized” form of the self-energy.

The results of Sec. II are formulated entirely in terms of
many-body distribution functions and make no assumptions
about how these have been obtained. Thus, the ingredients of
the theory could also be obtained from simulation results if
these should become available with sufficient accuracy.

Section III carries out a diagrammatic analysis of these
distribution functions in terms of Abé diagrams in order to
determine the minimum set of diagrams that need to be in-
cluded to have a fully consistent theory. We will show that
these are given by an infinite series. The required sets of
diagrams are generated by linear equations, i.e., the calcula-
tion is easier than a HNC summation.

All of the derivations of Secs. II and III will be formu-
lated for inhomogeneous systems. In homogeneous systems,
it is popular to work in momentum space, although the dia-
grammatic rules are topologically less intuitive. Section II D
will therefore specifically formulate the equations of motion
derived in Sec. II for a translationally invariant system.

Section IV will finally turn to the numerical implementa-
tion of the equations of motion method. Taking ingredients
computed with the integral equations derived in Sec. III, we
will present results for the dynamic structure function of “He
close to saturation density. Surprisingly, the final result of the
pair-excitation version of the equations of motion method is
practically indistinguishable from the convolution approxi-
mation result. This is, however, consistent with the expected
results when triplet fluctuations will be included. The result
is, of course also quite satisfactory because it provides a
rigorous justification for the relatively simple convolution
approximation that has been used in the past.
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II. STATIONARITY PRINCIPLE AND THE GENERIC
EQUATIONS OF MOTION

We formulate in this section the generic equations of mo-
tion for an excitation operator of the form (1.6) in the spe-
cific case that the series is truncated at the two-body level.
The equations of motion will be given entirely in terms of
n-body distribution functions. The essence of this section is
largely contained in Ref. 8, but the derivation will be carried
out in a different order; the rationale for this will become
apparent in future work where we generalize the method to
triplet fluctuations.?® Also, we shall formulate the equations
for the case of nonuniform systems. Since we will need
three- and four-body distribution functions, there is little
technical advantage in the assumption of translational invari-
ance and isotropy.

Central quantities for the further developments are n-body
densities

NI fd3rn+1 ...d3rN|\I’0(l'1, ...,I‘N)|2

pn(rls""rn)z(N_n)! X ; X
d r ...d rN|q,0(r1, ...,l’N)|

(2.1)
and the corresponding n-body distribution functions
pu(ry, ....1,)
gn(rl, ,rn):l—. (22)
pi(ry) ... pi(r,)

These satisfy the short-ranged properties

gury, ....r,)=0 if |r;—rj|<r,
where r. is the hard-core radius of the interaction, and also

satisfy the sequential relations

fd3r,,pn(r1, cor))=(N=n+1)p,(r,, ....r,_)).

For convenience, we will use the notation [ d3pi
= [p,(r;)d*r; for the density-weighted volume integral. Also,
a frequently needed function is

hy(ry,1rp) = go(ry,1;) = 1. (2.3)

A. Fluctuating densities and distribution functions

The central quantities of linear-response theory are the
fluctuations of the n-body densities for the wave function,
Eq. (1.5). We define these quantities as complex functions;
the physical fluctuations are their real parts. We can write
these fluctuating densities in terms of variations in ground-
state densities with respect to the components of the ground-
state wave function, Eq. (1.2). Doing these variations,
we always think of the Jastrow-Feenberg amplitudes
u,(ry,...,r,) as the independent functions. Thus
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op(r;1) = fd3 i, (r 1))

1)
+ J dSFIdSVZLr)

Suy(ry,1))
Using the symmetry

5p1(l‘) _ l 5/)"(1'1, e 7rn)
Su,(ry, ...,r,) n! Su,(r)

Ouy(ry3t)

5u2(r1,r2;t). (24)

, (25)

we can also write Eq. (2.4) as

Spy(r;t) = f &ry (Z;ll((?)) u, (ry;31)

1 Bridr, 9p,(ry,1))

2‘ Sity (r) Ouy(r,rp50).

(2.6)

A key step at this point is to define a new one-body variable
ov,(r;1) by

op(r;r) = f 501(1'1J)
1( 1)
f 5’”‘ 601( s, @)
where

6
M:pl(r)ﬁ(r—rl)+pz(r,r1)—pl(r)pl(rl)
Su, (ry)

= py(r)S(r,ry)p;(r)) (2.8)

is recognized to be related to the real-space representation of
the static structure function S(r;,r,). Note that we deviate
here in our convention on density factors slightly from the
one used in Ref. 8 and related work.

The relationship between du;(r;7) and dv,(r;z) is then

1 L Ouy(r')
8o,(r31) = duy (r30) + d3rﬁ
6 b
de3rld3r2M5“2(r1,rz;t)
Suy(r')

Op,(ry,15)
9py(r)

Suy(ry,1)50).

1
= 5M1(r,t) + EJ d3r1d3r2

(2.9)

Here we need to define what the variation with respect to
the one-body density means. This can be done in two ways:
if we think of obtaining the distribution functions from a
simulation calculation, we can express 8p,(r;,r,)/ du;(r’) in
terms of two- and three-body densities. The first line of Eq.
(2.9) can then be taken as a definition of the second line
because the inverse of the static structure function, Eq. (2.8),
is known as the direct correlation function.

In this work, we will, however, use diagrammatic meth-
ods. A priori, we should think of the two-body density and/or
pair-distribution function as a diagrammatic expansion in
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terms of n-body correlation functions explu,(r;,...,r,)].
These diagrams contain articulation points. Summing all
diagrams connected the external points through an articula-
tion point r; just gives the one-body density p,(r;). We there-
fore may think of p,(r;,r,) also as an expansion in terms of
the pair (and triplet) correlations exp[u,(r;,r;)] and the one-
body density. This is, in fact, how the hypernetted chain
equations for nonuniform systems are formulated.>> The ex-
pansion is the same as before, except that it has no articula-
tion points, and the individual point is interpreted as contain-
ing a factor p,(r;) instead of "1, The variation with respect
to the density is understood to be done on this expansion.

We want to use 6v,(r;f) as the independent one-body
function, but since there is a one-to-one relationship between
6v,(r;1) and 8p;(r;7) that does not involve the other n-body
fluctuations, it is the same as keeping the latter as the inde-
pendent one-body function. For further reference we also
need the fluctuation of the pair-distribution function in these
variables

Opa(r,1rp51) = [8p) (130 py(1ry) + py () py (ry:1) |go(ry,15)
+p1(r)p;(ry) 8g,(ry,1p50). (2.10)

The time-dependent part of the pair-distribution function
0g,(r|,1y;1) consists of two terms

0g,(ry,ry5t) = ng(rl5r2’t)+ .82(r1.r250),  (2.11)

where

0g,(ry,17)

Opy(r3;e)
opi(ry) PN

5pg2(1'1,1'2;t)=fd3”3
Efd3r3R(1'3;1'1,1‘2)5P1(1‘3;f),

8g,(ry,15)

s ) = d3 d3
u82(T1,T231) f '3 r45u2(r3,r4)

Oty (1r3,1431)

Efd3P3d3P4g22(1'1,1'2§1'3’1'4)5M2(1‘3’1'4§f)

(2.12)

are the fluctuating parts of the pair-distribution function due
to the time dependence of &p,(r;;r)—or equivalently
vy (ry;t)—and Su,(r;,r;;1), respectively.

For the one-body equation, we also need the one-body
current in terms of both the old and the new variables

%
j(r;r) = [pl(r)V ouy(r;t)

+fd3r1p2(r,r1)Vr5u2(r,r1;t)}
h
=—pi(r)| V. bv,(r;0)

2mi

1
- Ef d3p1d3p2W(r;rl,rz)é‘uz(r],rz;t)}

(2.13)
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=jp(e30) + (30, (2.14)
where
W(r;ry,r;) = gv ha(r,r)) + ule )V (1)
pi(r) pi(r)
+ V. R(r;r,ry). (2.15)

Equations (2.13) and (2.14) define, in an obvious decompo-
sition, a “Feynman current” jr(r;7) and a “pair-induced cur-
rent” jp(r;t). The name Feynman current indicates that this
term survives in Feynman approximation &u,(r;,r,;)=0.
Note that we have, again, defined jx(r;?) and j,(r;?) as com-
plex quantities.

B. Lagrangian

We now bring the Lagrangian Eq. (1.8) into a form suit-
able for deriving the equations of motion. Here we deviate
from the previous derivation® which performed a variation
with respect to the du,(r;,...,r,;7). This led to a pair of
equations of motion that still had to be manipulated to pro-
vide independent equations for the one- and two-body fluc-
tuations. Instead, we transform first to the new set of func-
tions &v,(r;z) and Sv,(r,r’ ;1) = du,(r,r’ ;) which leads to a
more compact Lagrangian and directly to independent equa-
tion of motion. While the procedure is somewhat cosmetic at
the level of implementation of the theory presented here, it is
an essential step when fluctuating triplets are included.'®?3

The external field term depends, to first order in the new
variables, only on the one-body amplitude év,(r;r), cf. Eq.
2.7),

‘Cext(t) = ReJ d3r5pl(r;t) 5Uext(r;t)

= REJ d3P1d3P25Uext(l‘| s)S(ry,10) vy (1ry;31).

(2.16)

The time-derivative term is conveniently expressed in
terms of (time derivatives of) the time-dependent one- and
two-body densities dp,(r;r) and 8p,(r;,r;;1) to be taken to
second order in the fluctuations

i ]s

L) =- %wolaff(r) SU*(1) = 807 (1) SU ()W)

ifi
=- %U drp (r31) 6 (r31)

1
+ Ef d3r1d3r2p2(r1,r2;t)5u;(r1,r2;t) - C.C.:|
ih
= §|:fd3rp1(r,t)5vT(r,t)
1 3 3 . *
+ E d pld pzﬁugz(rl,rz;l‘)5vz(l‘1,l‘2;t) —C.C. |.

(2.17)
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Inserting the explicit form of our time-dependent correlations allows us to rewrite the interaction term, Eq. (2.18), in terms

of one-, two-, and three-body distribution functions,

2

f #
Lin(1) = %{f d3p1|V5u1(r1;t)|2 + f d3P1d3ngz(l'1,l‘2)[V15“1(1'1QI) -V uy(ry,rys0) +c.c. + |V15U2(1‘171'2;f)|2:|

+ f d3P1d3P2d3P3g3(1‘1,l‘z,l’3)V15”2(1‘1,1‘2) : V15’4;(I‘1,l‘3)}

— ﬁ_z d3
= 8m P1

Vl&‘l(l’l;l)‘*jd3P282(r1»1'2)V15”2(1'1»1’2)

2
+fd3P1d3P282(r1»r2)|V15”2(1'1»1’2;l)|2

+ f d3p1d3p2d3p3[g3(r1,rz,r3) = 82(r;,r)g5(r,r3) [V, duy(r 1) - V 5”;(1'1,1‘3)}

m

2

where
_ ;o)
pi(r)

is the local velocity field and we have defined, for further
reference,

v(r;?) (2.19)

Ar; —13)
pi1(ry)

—82(1'1,1'2)82(1'1,1'3)-

Fop(ry:rs,13) = g5(r),15) +g3(ry,12,13)

(2.20)

C. Equations of motion

We are now ready to derive the equations of motion for
the Lagrangian Egs. (2.16)—(2.18). The external field term
depends only on év,(r;7), hence

Lex(t) 1 ( )f o S(Eer) U (1)
=—p(r r,r et(T',1),
P p ‘
OL ot
*—t()= (2.21)
Sv5(r,r' ;1)

as well as

K2 N
= fd3P1|V(1'1§f)|2+ %J d3P1d3P2d3P3-7:22(1'1§1‘2,r3)vl502(1'1,1'2)vl502(1'1,1'3),

(2.18)

oL (1) it

e ),
5UT(r1;t) 4 pl(l )

OL1) ih ,
o L = o Pir)pi(ry) 8,8 (rry0). (2.22)
dvy(ry,rp5t) 8
The interaction term L;,(f) depends on the one-body vari-
able only through the current, hence

5Eint(t) _ ﬁ

i) 4 (2.23)

-J(rsn).
Thus, the one-body equation is simply the continuity equa-
tion

2
V- jlr;0) +pi(r;0) = i_hpl(r)J dp'S(r,r")6U, . (r';1).

(2.24)

This result has been obtained earlier, see Refs. 8-10. The
advantage of the present formulation is that the two-body
equation also comes out more directly. In particular, it is
immediately obvious that the two-body equation does not
contain the external field.

Aol R
Voo Vi | pi(r) | @psFo(riiry,rs)V dv,y(ry,rsst) [ +same for 1«2
2mp(ry)

= if6,8,(r),r50) + iﬁj d*r3j(rs:t) - W(ry;rp,ry).

(2.25)
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At this point, we go from the time-dependent formulation
to frequency space. We make the standard decomposition

Uext(r;t) = Uext(r)[eiwt + e‘i“”],

—iwt

v, (ry, ....r0) = 5v,(1+)(r1,

+ 5051_)(r1, T)el

> l'”)e

Opi(r;1) = pi (r)e ™ + 5pi7 (r)e™,

jr;) =P (r)e @ + jO(r)e’". (2.26)

The pair fluctuations are functions of one frequency only
because the pair equations with positive and negative fre-
quency decouple; only the one-body equation will give us
eventually a superposition of positive and negative frequen-
cies. Introduce the operators

E(rl,rz;r{,ré;ﬁw)

o1
== ————V;-[8(r; = r))p(r) Foo(ry5rs,15)]
2m py(ry) 1 1 1)P1\r )/ I3, )

1
XV{——— +same for {I,1'} < {2,2'}
pi(ry)

- ﬁwgzz(r],rz;r;,ré)

= Tpy(ry,rp;r, 1)) — hwGyy(r,1y:r],1)) (2.27)

such that the pair equation is
fd3r1d3r£5(r1,rz;r{,r£; = fiw)py (r})py (r5) 8057 (], 1)

= ih f FrsW(rsir,ry) - & (rs) (2.28)

and the pair-induced current becomes

e

()
r)=-—
==

P1(r)f & p\d*pW(rsr), 1) 8057 (r),15).

(2.29)

Equations (2.24) and (2.28) form, together with the con-
nections, Egs. (2.8) and (2.13), and Eq. (2.29), between the
amplitudes, the current, and the density fluctuation, the ge-
neric set of equations of motion for the pair fluctuations; see,
for example, Appendix A of Ref. 8. Typically, approxima-
tions are made at this point to make further progress. Most
popular is the uniform limit or convolution approximation in
which the operator £(ry,r,;r|,r};») becomes diagonal in
momentum space or, in a nonuniform system, in the space
spanned by the Feynman excitations.® This approximation is
also obtained by second-order Brillouin Wigner perturbation
theory.'22¢ Less transparent is the relationship to the work of
Saarela® who introduces the left-hand side of Eq. (2.11) as
the independent two-body quantity and arrives, therefore, at
algebraically different equations.

The one- and the two-body equation are still coupled;
they can be completely decoupled as follows: define, for any
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two-point operators A(r,r’) and B(r,r') the convolution
product

[A*B](r,r') = f &Er"A(r,r")p,(r")B(x",x") (2.30)

as well as the logical extension for a four-point function such
as &(ry,ry;r],r5;hw). The inverse of an operator A in the
sense of the convolution product is

Sr-r')
pi(r)
(2.31)

[A—l *A](l‘,l‘,) = f d3r”A_1(r,r")p1(r")A(r”,r’) —

and, analogously, for the energy operator

[ E](r),ry:r T); 0)
Efd3r3d3r45_1(l'1,1'2;1'3,1'4;ﬁw)

X py(r3)py(r)E(rs,ry;r],r)h0)
O, - r;)8(r, —r})
p1(r)pi(ry)
We can combine Egs. (2.28) and (2.29) into

i) =) - w)

(2.32)

= py(r) J Prlo(r,r’; + ho)iOr'), (2.33)

where the components of the tensor o(r,r’;Aw) are defined
by

h2
O'ij(l',l" ,ﬁw) =- _[Wl * 8_1 * W]‘](r,r, ,(x)) (234)
4m :

The total current is then in terms of the Feynman current

i =pi(0) f &r'[1 - o= ko) ()i (1),
(2.35)

where

, or-r')
1(r.r’) = @;m-

We now go back with this solution into the one-body
equation and write Eq. (2.24) as

2
iﬁw&p(li)(r) + ;L—mf &r'{V.p,0)[1- o(=how)](r,r')
Xpy(r)V, }oo( 7 (r') = 2p,(r) J dp' S(r.x")Upy(x').

(2.36)

Define now a self-energy as
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S(r,r’ho)

h2
=-—{(§7"*V) *[1- o(ho)]" * (VS"D)Hr,r';fiw)

2m

(2.37)
and the single-phonon propagator
Sr—-r’)

pi(r)

Solving for the real part of the density fluctuations, we fi-
nally obtain the coordinate-space representation of the
density-density response function

Gl (r,r' ho) =tho +3(r,r'";hw). (2.38)

x(r,r';ho)
=p(0)[S"? #{G(fiw) + G(- fw)} * SY*](r,r")py (r').
(2.39)

This is our final result for this response function; it is iden-
tical, in a slightly different notation, to Eq. (2.18) of Ref. 8.
We stress, however, again that no approximations have been
made so far other than the assumption of pair fluctuations.
The appearance of the expression [1—-o(fhw)]™" is analogous
to Owen’s “renormalized self-energy” of an impurity in a
Bose fluid.?*

D. Uniform system

In the case of a translationally invariant system and a
plane-wave perturbation, the perturbed density can only be a
plane wave, and the current a plane-wave current

5pi(r) = poe'™™,  j(r) = jopqe™. (2.40)

Since both the left- and right-hand sides of Eq. (2.33) are
in the direction of q, and because of translational invariance,
we only need the scalar function

G(g.hw) = E inO-ij(qvﬁw)qu’
ij

(2.41)

where the §; are the components of the unit vector § in the
direction of q. Equation (2.33) can then be solved in closed
form,

)

i) = (2.42)

(g, = hw)

with  &(q,hw)=p[d*ro(r;hw)ed™ because o(r,r’;fiw)
=o(r-r’;w) in the homogeneous case. Taking this into the
one-body equation gives finally

ﬁ2q2
w—
2mS(q) 1 - o(q,hw)

P (g) =25(q) Uy

(2.43)
and leads to the bulk self-energy

&(q)

o)

(2.44)

and the density-density response function
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S(q) . S(q)
ho-2(g.hw) —ho-3(q-ho)’
(2.45)

X(q,0) =

[We deviate here from the previous notation in the sense that
we define the Feynman energy £(q)=#%2¢*/2mS(g) as a part
of the self-energy.]

Previous implementations of the theory have led to a form
that is obtained by expanding the term 1/[1-d(q,%w)] to
first order in (g, ). This is obviously not necessary. Fol-
lowing Owen,?* we shall refer to

&(q)

T s

(2.46)

as to the renormalized self-energy, whereas the expanded
form

Sy(g.fiw) =e(g)[1 + 5(q.fiw)]

will be called the “unrenormalized” form.
For a plane-wave current, Eq. (2.40), we can write the
right-hand side of Eq. (2.28) as

(2.47)

iﬁf d3r3W(l‘3;l‘1,1‘2) -j(rs)
= iﬁjoeiq'Rq . [th(rlz)(eiq'r”/z + e—iq~r12/2)

+ pf d3r3eiq-r32/2+iq»r31/2V3R(r3;rl’rz)]

2m .
= one’q'RV“)(q,ru), (2.48)

where r;;=r;—r; and R=%(r1+r2) is the center of mass co-
ordinate. V3 (q,r 12) is, up to normalization factors, the
three-body vertex of correlated BW theory.'? Equation (2.48)
shows that the right-hand side of the pair equation factorizes
into a plane wave for the center of mass motion and a trans-
lationally invariant term. It is therefore legitimate to take the

same form for the pair fluctuation, i.e.,

51)2(1’],1’2) = eiq'qu(l‘lz). (249)

With this, we can write the full solution as

1 &’p,d’p; =
a(g.hw) = —— [ ===V (q;p))E ' (q;p1,pa; @)

XV (q;p,). (2.50)

Note that this form is completely general for pair fluctua-
tions. In the CA, the energy denominator is diagonal and we
obtain the well-known form

(TCA(q,ﬁw)
R &Pp V3 (q;p)?
26(q)) @m’phow-e(a2-p|)-e(q2+p))’

(2.51)
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II1. DIAGRAMMATIC ANALYSIS
A. Inhomogeneous system

Different implementations of the equations of motion dif-
fer, in their essence, in the kind of approximations made
depending on the system under consideration. The most fre-
quently used convolution approximation was first derived by
Brillouin-Wigner perturbation theory in a correlated
basis.!>!1> This approximation amounts, besides the linear-
ization, Eq. (2.47), to the following simplifications

Foo(ryiry,rs) = ﬁgSA)(rl irp,13) =S(r),13),
. ~ ((CA) . _
Gop(ry,1p513,1y) = Gy (ry,ry5r3,ry) =S(r,r3)S(r),1y),

R(rs3;r;,1y) = RN (rs;r,1)
= hy(ry,13)hy(ry,13) + us(ry,rsrs), (3.1)

where us(r;,r,,r3) is the ground-state triplet correlation
function. The importance of this contribution has been em-
phasized by Chang and Campbell.!?

The CA preserves the long-wavelength features of the
equations of motion in the sense that it is the simplest ap-
proximation that preserves the convolution identities

fd3p2]-‘22(r1;r2,r3) =0,
f d’pyGas(rra3r3,14) =0,

f d’pyR(r3;r1,1)) = = hy(ry,13), (3.2)

and corresponding relationships generated by symmetry op-
erations. All of these relationships are consequences of the
property [d*pyhy(ry,ry)=—1.

The short-ranged structure of the functions Fy,(r;r;,13),
Gy(r,ry;13,1,), and 8g,(r;,r,)/ 8p,(r3) are, on the other
hand, violated by the uniform limit approximation. These are

Fo(ry;ry,rs) — 0 as |rj—ry —0 or |rj—r3 —0,

Go(riry;rs,r) — 0 as [rj—ry] —0 or [r;—ry —0,

R(ry;r,ry) — 0 as |rj—ry — 0. (3.3)

There is no simple approximation that satisfies both prop-
erties, Egs. (3.2) and (3.3), and a diagrammatic analysis of
what is needed is called for. Figure 1 shows, in the usual
diagrammatic language of the HNC theory, the first few dia-
grams contributing to the three-point function Fys(r;;r,,r3).
Circles indicate “external” points, filled circles indicate a
density-weighted volume integration [d°p;. Solid lines con-
necting two points r; and r; represent a function /,(r;,r;).

PHYSICAL REVIEW B 80, 174501 (2009)

Rl g (NN
4 <4

FIG. 1. The figure shows the first few contributions to a dia-
grammatic expansion of the function Fy,(r;;r;,r3). The coordi-
nates rj, r,, and r3 are as shown in the first and the third dia-
gram, the double circle indicates that these coincide, i.e., a factor
o(ry—r3)/ py(ry).

The short-ranged properties, Eq. (3.3), are seen to emerge
as follows: combining diagrams 1 and 2 just gives a function
g>(r,1;) 8(ry—r3)/ pi(r;). The sum of the next four diagrams
is g,(r;,ry)g)(r;,r3)hy(ry,1r3) and therefore satisfies Eq.
(3.3). Likewise, the combination of the first four diagrams in
the second line leads to a common factor g,(r;,r;)g,(r;,r3).

The long-wavelength feature, Eq. (3.2), is obtained differ-
ently. Carrying out the density-weighted integration over co-
ordinate r, leads to the cancellation of diagrams 1 and 3, 2
and 4, 5 and 7, 6 and 8, 9 and 11, as well as 10 and 12.
Evidently, different combinations of diagrams are needed to
guarantee the properties, Egs. (3.2) and (3.3), and it takes an
infinite series to guarantee both. The uniform limit approxi-
mation keeps only the first and the third diagram.

The series of diagrams whose first terms are shown in Fig.
1 can be summed by the usual hypernetted-chain technique,
summing “nodal” and “parallel-connected” diagrams self-
consistently. Denote, for all three quantities to be calculated,
the parallel-connected subset with a superscript X and the
nodal subset with a superscript N. Then, the series is
summed by the following set of equations,

5”(22’)(1‘1 iTp,T3) = js(ng)(ﬁ i), 13)

+ J d3p4]:(2§)(r1 1Ty, 13)hy(ry, 1)),

‘7:(2)5)(1'1 ;T,T3) = hz(rler)‘ng)(rIZ’rB)’

Fo(ryira,rs) = 7:(21;[)(1'1 ;T,T3) + ]:(Z)é)(rl irp,r3). (3.4)

Similar integral equations for R(r;;r,,r;) and
G(r,,r,;r5,1,) are obtained diagrammatically or by variation
in the hypernetted chain equations for inhomogeneous
systems? with respect to u,(r;,ry) or p,(r;). The first few
diagrams contributing to the series are shown in Fig. 2. The
same remarks apply about how to group these diagrams such
that they have a common factor g,(r,,r;) and how to group
them such that the sequential relation (3.2) is satisfied.

The integral equation summing these diagrams is
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RWM(r51,,13)

= RN (r,;r,,13)

+Jd3P4R(X)(I'1;1'4,1'3)h2(1'2,1'4)
+fd3P5R(X)(P1§1‘2,1'5)h2(1'5,1'3)
+fd3p4d3p57€(x)(r1;r4,r5)h2(r2,r4)h2(r3,r5),

RO (ry515,13) = RV(r) 15,1315 (15, 13),

R(ry;rp,13) = R(X)(l'l iT),T3) + R(N)(rl irp,r3).  (3.5)

Finally, the integral equation summing the series
Go(ry,ry;13,14) is practically identical, only the driving
convolution approximation term is different:

N
g(zz)(l'l JT23T3,Ty)

CA
= ggz )(1'1,1'2§1'3,1'4)

+fd3p4g§§)(1'1’1'2§1'5s1'4)h2(1'3’1'5)
+fdSPeg(z?(l'l,1'2§1'3’1'6)h2(1‘e,1‘4)
+ f d3P5d3P6g(2§)(1’1,1‘2;1’5,re)hz(r3,r5)h2(r4,r6),

Q(z)ﬁ)(rl,rz;ra,m) = g(zgl)(l'l,1’2;1'3,1'4)}12(1'3,1'4),

Go(ry,ryirs,1y) = gg)(rl,rz;r3,r4) + gg)(rl,rz;r3,r4).
(3.6)

The integral equations formulated in Egs. (3.4)—(3.6) sum
only the minimum set of diagrams that is necessary for a
consistent treatment of the short- and long-ranged correla-
tions. On the other hand, they are “generic” in the sense that
they decompose, for example, the four-point function into
sets of diagrams that can be split into two disconnected
pieces such that one piece contains the points r; and r, and
the other one the points r; and r, by cutting them in two
points. Thus, the rectangle appearing in the last three dia-
grams of Fig. 2 may be any four-point function that cannot
be decomposed as described above. In this interpretation, the
series is exact.

It is, of course, also possible to include, without undue
computational effort, triplet correlations and elementary dia-
grams in the diagram summations. Recall that triplet corre-
lations have been found important for understanding the den-
sity dependence of the roton minimum;'? these are therefore
routinely included in the convolution approximation, Eq.
(3.1). There are, of course, more elementary diagram and
triplet corrections to the driving term R(r;;r,,r;). A few
typical diagrams are shown in Fig. 3. The first two diagrams
are included in the CA, Eq. (3.1).

PHYSICAL REVIEW B 80, 174501 (2009)

<G, <] <L <[
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FIG. 2. The figure shows the first few contributions to a dia-
grammatic expansion of the function R(r;;r,,r3). The coordinates
ry, rp, and ry are as shown in the first diagram. The first diagram
shown is the convolution approximation; it should be supplemented
with a three-body ground-state correlation u3(r;,r;,r3) which is not
shown here. For elementary diagram and triplet corrections, see
Fig. 3.

To test the importance of elementary diagrams and triplet
correlations beyond the simplest term, we have calculated
the third diagram shown in Fig. 3 as well as all diagrams
containing one three-body correlation us(r;,r,,rs). It was
found that none of these corrections produced a visible effect
on the numerical results; they were therefore not included in
production runs.

B. Integral equations for the uniform system

The essential part of the calculation is the solution of the
pair Eq. (2.28) or, equivalently, the calculation of the inverse
of the energy operator £(r;,r,;r,,r5;w). This looks, at first
glance, like a rather formidable problem because the ingre-
dients are, even after using translational invariance and isot-
ropy, still functions of seven variables.

For the uniform system it is convenient to work in mo-
mentum space; the necessary manipulations are carried out
in Appendices A and B. Define

In(q:p.p’)
— pzf dSrl2d3r34d3r24e—iq~r24—ir12-(p—q/2)+ir]2-(p’—q/2)

X Gpo(ry,1r)513,1) (3.7)
and likewise ’fn(q;p,p’). We can further expand the angular
dependence of the ingredients of the integral kernel
E(q;p.p’;w) in Legendre polynomials

Ton(a:p.p') = 2 Teer(q:p.p PG - PP (G- B'),

FIG. 3. The figure shows the convolution term in the diagram-
matic expansion of the function R(r;;r,,r3) (leftmost diagram) as
well as the triplet correlation us(r;,r,,rs;) (gray triangle with
dashed borders) that is normally included in the convolution ap-
proximation (second diagram). Also shown is the first elementary
diagram contribution to R(r;;r,,r3) (third diagram) as well as a
few diagrams containing one three-body function. The coordinates
ry, Iy, and ry are as shown in the first diagram.
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unrenormalized, CA
25 = X

S(@o) e

54 Cowley-Woods o
Feynman x

0 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

q (A

FIG. 4. The figure shows a gray-scale map of the dynamic struc-
ture function in convolution approximation for the unrenormalized
version of the self-energy, Eq. (2.47). Darker values correspond to
higher values. The circles are the experimental data of Cowley and
Woods (Ref. 29), and the crosses show the Feynman excitation
energy £(q). The solid line is the dispersion relation of the collec-
tive excitation and the dotted line indicates the lowest energy fw,
where the self-energy is complex.

Go(@:p,p) = 2 Geer(q:p.p")Pe(G - P)Pe (G- P'),
08

E(q:p.p; ) = 2 E¢or(q:p.p" 3 0)Po(d - P)Per(G - P').
0,0

(3.8)

Note that we do not need to expand the integral kernel in
terms of spherical harmonics since only the m=0 component
survives due to the structure, Eq. (B3), of the right-hand side
of the equation which implies the form (B4) of the excitation
functions. Only even angular momentum components con-
tribute due to the symmetry q < —q.

The resulting integral equations in momentum space are
spelled out in Egs. (A2), (A3), and (A5), and the angular
momentum decompositions in Egs. (B6), (B9), and (B11).
The angular momentum representation can be solved quite
easily, after discretization, either by iteration, or as a system
of linear equations. The inverse of E¢/(g;p,p’;w) can then
be calculated by solving the generalized eigenvalue problem

d3pr -
Ef—(2W)3Teer(q;p,p’)vg"f(p’)
el

=ﬁwnEJ o )gGeer(qpp)vg,)(p) (3.9)
¢’

The operator E;é,(q ;PP ; ) then has the spectral decompo-
sition

E;(qsp.p' ;o) = E Oy o (p’).

0
(3.10)

The use of this spectral decomposition is convenient since a
small imaginary part needs to be added to the denominator
only for those states vt o (p) whose energy #iw, is close to the
target energy fiw. The smallest eigenvalue of Eq. (3.9), re-
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renormalized, CA
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FIG. 5. Same as Fig. 4 for the structure function in convolution
approximation for the renormalized version of the self-energy, Eq.
(2.46).

ferred to here as fiw,, is the energy below which the self-
energy correction is real and, hence, we have a zero-width
collective mode. In the convolution approximation, we have

fiwc™(g) = min[e(|q/2 - p|) + e(la/2 +p)].  (3.11)
P

IV. RESULTS

We have solved the full pair equations of motion at the
HNC level for *He at a density of p=0.022 A~ which is
close to the experimental saturation density. We have used
the Aziz-1I potential>’ for the bare interaction. Input data
were generated by HNC-EL calculations described, for ex-
ample, in Ref. 28, including triplet correlations and scaled
elementary diagrams. We have included a gentle modifica-
tion of the very long-wavelength part of the Feynman spec-
trum that has the purpose of generating numerical consis-
tency between the speed of sound predicted by the excitation
spectrum, and the speed of sound obtained from the hydro-
dynamic derivative of the equation of state. The procedure,
whose only visible effect is that it avoids spurious damping
of long-wavelength phonons due to anomalous dispersion,
has also been described in Ref. 28.

Four sets of results suffice to summarize the message of
this paper. These are both the unrenormalized and the renor-
malized version of the uniform limit approximation, and the
same two versions for the complete HNC evaluation of the
ingredients F, G, and R. The results for the dynamic struc-
ture function S(¢g,w) are shown in Figs. 4-7. As a guide to

unrenormalized, full

51 Cowley-Woods o
Feynman x

0 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

q (A

FIG. 6. Same as Fig. 4 for the HNC calculation.
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renormalized, full
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Feynman x
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FIG. 7. Same as Fig. 5 for the HNC calculation.

where one wants to get, we also show the experimental data
of Cowley and Woods? and the Feynman spectrum &(g)
=h%¢*/2mS(q) in the figures.

These results are quite interesting and not entirely ex-
pected. The rationalization for including pair fluctuations
was discussed above. In this work, we have introduced
an approximation for the functions Fy,(r;;r,,r3),
Gy(ry,ry;5r3,1,), and R(r;;r,,r3) that satisfies borh proper-
ties, Egs. (3.2) and (3.3), at the same time. Nevertheless, the
combined effect of all of these improvements is quite small.
In the CA, the roton minimum comes out at 12.1 K which is
somewhat lower that the value of 12.9 K reported in Ref. 9.
We have traced the discrepancy to a different treatment of
“elementary diagram” contributions in the ground-state cal-
culation. The “renormalization” raises that energy to 13.3 K.
On the other hand, the HNC calculation of the two-body
operators lowers the roton minimum to 10.2 K in the un-
renormalized version whereas the renormalization raises it
again to 12.2 K, i.e., to almost the same location that was
predicted by the simplest, time-honored version of Chang
and Campbell.'?

One might, at this point, of course question the validity of
the integral equations employed here for the calculations of
the basic ingredients of the theory. These equations sum just
the minimum sets diagrams that one must include in order to
guarantee both the correct long- and the short-ranged struc-
ture of these quantities. But we already have experience with
the additional quantities, triplet correlations and elementary
diagrams, in ground-state calculations. The total effect is not
negligible but by far not large enough to bridge the gap be-
tween the calculated and the experimental roton energy. Fur-
ther evidence for the fact that our approximations are suffi-
cient is the fact that the leading corrections to the right-hand
side R(r;;r;,r;3) are indeed negligible; see the discussion at
the end of Sec. III.

Thus, the only conclusion is that the truncation of the
excitation operator at the two-body level is insufficient for
explaining the experimental data. The cause for this is al-
ready seen in the self-energy in the CA, Eq. (2.51): the en-
ergy denominator contains just the Feynman excitation ener-
gies. When three-body fluctuations are included at the same
level, the energy denominator gets modified into®?

(4.1)

That means that the energies in the energy denominator get

PHYSICAL REVIEW B 80, 174501 (2009)

basically shifted close to the energies of the experimental
phonon-roton spectrum. We have occasionally simulated this
effect in previous work by scaling the energy denominator
accordingly. The above result justifies this procedure; it also
makes clear that the shift is indeed due to triplet and possibly
higher-order fluctuations.

To summarize, we have presented in this work a complete
solution of the pair equation of motion for the small-
amplitude dynamics of “He. Although the result that pair
excitations alone can not explain the experimental roton en-
ergy seems disappointing at first glance, it is actually quite
encouraging: it comes with the message that the CA is, un-
expectedly, quite good even far beyond the roton momentum.
The diagrammatic resummations carried out above are, while
numerically not challenging in the homogeneous geometry,
demanding in nonuniform systems. Thus it is good news that
the CA, while at first glance defeating the purpose of many-
body fluctuations, is quite accurate. Moreover, one can also
expect that triplet fluctuations can be dealt with at the same
level of approximation which makes even the implementa-
tion of the theory for inhomogeneous systems such as films
and clusters feasible.
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APPENDIX A: MOMENTUM SPACE EQUATIONS

The Fourier transform of Fp,(r;;r,,r3)=F0(r,r3) is
defined as

T _ 2 3 3 ipyT1r—ipy T
Fo(p1.p2) =p Jd Fipd’r 3PN PN E (1,1 5) .

(A1)

With this convention, the three integral Eqgs. (3.4)—(3.6) be-
come

FN(p1.p2) = FSN(py.pa) + h(p2) F(p,.py).

FH(p1.po) = f — = Iy(p1 — P3) F5 (3. P2

2)*

FSNpy.py) = 21 p8p; - p2)S(py). (A2)

The four-point function also depends parametrically on q,

G(Q:p1,p2) = G55 (@:p1,po) + 54(p1) G (@3 Py Py)s

G (q:p1.py) = f hy(p1 = P3)G5 (4:P3.P2)

2)3

(2m)°pd(p; —p)S(a/2 - pi)S(|la/2 + py|)
(A3)

Mq:p1,py) =

with
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Sa(P)=5(la/2+p))S(la/2 - p|) - 1. (A4)

The integral equation for the right-hand side is practically the
same with a different driving term

RM(q;p) =R N (q;p) +5,(P)RY(q;p),

S (X) &’p’ -~ " (N) /

RAq:p) = | ——5m(p-p)R™(q;p"),
(2m)p

RN (q;p) = hy(|a/2 - p)hy(|a/2 +py)

+i3(|lg/2-p.a/2+p,—q). (AS)

The inhomogeneity of the pair equation is in momentum

space
Dam (9 q
VW(q,p) 5 { S +P || S +p

(g
+ —
2

The convolution approximation of all three quantities
consists of just keeping the terms labeled with a superscript
(CA).

The full kinetic-energy operator needs some more work.
We start from the integral equation and expand the fluctua-
tion in momentum space. First split off the center-of-mass
motion as given in Eq. (2.49). Then the coordinate space
representation of the kinetic-energy operator in Eq. (2.25)
becomes

p)ﬁz(g - p) + qﬁ(q;p)} . (A6)

fiz
) ( +V ) J d3p3}'22(r12,r13)
m
. (’g + Vl) Bug(ry — K2 (A7)
or, in momentum space
fiz ‘13
3 ———Fn(q/2+P,,q/2 +p,)
2m)’p
X(q/2-py) - (q/2 = p2)og(p2)- (A8)

The second kinetic-energy term is the same with the signs of
p and k reversed. Thus, the momentum space representation
of the kinetic-energy operator becomes

T5y(q:p1. P2 @)
72 _
= E(q/2 +p1) - (q/2 +p2) Fn(q/2 = p1,q/2 - po)

#2 _
+ g(q/2 =p1) - (Q/2 = p2) Fa(q/2 + p1,q/2 + po).

(A9)
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APPENDIX B: PARTIAL-WAVE EXPANSIONS

The momentum space equations are solved in angular mo-
mentum representation. We need, as an auxiliary quantity,
the partial-wave expansion

hy(|k; — ko)) = E

tm

kl’kZ) Yfm(Q ) Yfm(QZ)

(B1)

where the (); are the angles between 12,- and 4. We also need
the partial-wave expansion of 5¢(p) defined in Eq. (A4),

> sdp)Pe(d-p).

€ even

54(p) = (B2)

The partial-wave expansion of 5y(p) defined in Eq. (B2) is

generated from the partial-wave expansion of Ez(q/ 2-p).
From symmetry we conclude that the §,(q,k) are zero for
odd €. Since the external momentum ¢ enters only para-
metrically, we omit this dependence for ease of writing.

The right-hand side V( ®)q,p) of the equation of motion
can, for symmetry reasons, only depend on the values of g,
p, and the angle between them. It is therefore legitimate to
expand

> VPa.p)Pud-p),

€ even

VW(q,p) = (B3)

where, due to the symmetry q <« —q, only even angular mo-
mentum components contribute. Therefore, the excitation
function also contain only even angular momentum compo-
nents,

> PG K)8(q.k).

€ even

04(k) = (B4)

1. Four-body term

The operator gzz(q;pl ,P2) can be generated by iteration
as indicated in Eq. (A3). Owing to the symmetries discussed
above, we can write

2 G, (Pip)Pe (3P (x)

€€, even

Goo(q;p1.p) =
(BS)
GN(q;py,py), and

gg)(q;pl,pz). In angular momentum decomposition, we
have

and likewise for QESA)(q;p1,P2),

1 d3p3
20,+1) 2m)’p

( (2(17131—72) hel(Pl ,Pa)GE«];],)fz(Pa»Pz),

é(elzl,)ez(l’bpz) = G(e(ff})z(.l’bpz) +20+ 1) 2¢,6,(p1)
G

XGEe?ez(Pl»Pz),
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&ea) (2 )3
G, (p1p2) = 5(171 -pIl(2€,+ 1)y o,
+ (261 +1)(26, + 1)261,62(171)], (B6)
where
€ €, €,\?
) = ( ' 2). B7
06,(P1) ;wo 0 0 o (B7)

2. Right-hand side
Inserting the partial-wave expansion in Eq. (A5) gives
basically the same equation for the components of

> Rd@QPG-P), (B8)

€ even

R(q;p) =

Np)+ 2+ 1) 2 30 (g2, )R k),
(!

RV = R

RX (k) = f Zors ——h(k,p)RM(p),  (BY)

20+ 1

and E%CA)(p) is the partial-wave expansion of the R“*)(q,p)
defined in Eq. (A5). From the solution of Eq. (B9) we obtain
the partial-wave expansion, Eq. (B3), by adding the partial-
wave expansion of the first two terms in the definition, Eq.
(A6). Again, for symmetry, we conclude that only even-{
terms contribute.

3. Three-body term

F(q/2-p;.q/2—-p,) is a function of the angles G-p,,
q-P,, and P, -P,. We can, in this term, not use the argument
that only the m=0 components contribute to the integral
equation because we can couple an m=1 component with the
factors (q/2-p;)-(q/2-p,) in Eq. (A8) to an m=0 compo-
nent. We must therefore expand into spherical harmonics
Y, (Q) and Y,1,,(€Q,), where ), and ), are the angles be-
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tween p; and q or p, and (, respectively. Note that the m
quantum number is the same: this comes from the fact that

Fn(q/2-p,.q/2-p,) is only a function of |q/2—p|,
| —p.|. Hence,

For@/2 - p1,q/2 - py)
4
= > /
Gem N(2€ +1)(2€,+ 1)

XF ¢ em(P1:22) Y e Q)Y (2.

(B10)

The partial-wave expansions for ]-'(2)§) and ]-'(21;) are defined in
the same way. Inserting this into the integral Eq. (A2) gives
the angular momentum representation

f €2m(P1,P2) {7 { m(pl’pZ) + (2€2+ ])
XE ﬁ%)lof%m(pl’pZ)FQf}m(pZ)a
t :
=) 1 dps 7
Fi o mP1:p2) = 20,+1) Qmip F{u(p1opa)he,(pa.ps),
2
_@m’p
Fy €2m yp =26+ D)6y o,

+ (2€1 + 1)(252 + 1)F€],€2m(pl)]’

(B11)

with
I ¢ 6, € >(€ ¢, cg)
Leemp)=(=1) ;he(q/lp)<0 o —mllo o o/
(B12)

We need to solve these equations only for m=0 and m
=1. To calculate the kinetic-energy operator, we must com-
bine the partial-wave expansion, Eq. (B10), with the factor
(q/2-p;)-(q/2—p,) and recouple the angular momenta.
This is straightforward and can be omitted here.
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